Abstract
Recently, the demand for reliable and high-speed wireless communication has rapidly increased. Orthogonal frequency division multiplexing (OFDM) is a modulation scheme that is the newest competitor against other modulation schemes used for this purpose. OFDM is mostly used for wireless data transfer, although it may also be used for cable and fiber optic connections. However, in many applications, OFDM suffers from burst errors and high bit error rates. This paper presents the utilization of a helical interleaver with OFDM systems to efficiently handle burst channel errors and allow for Bit Error Rate (BER) reduction. The paper also presents a new interleaver, FRF, the initial letters of the authors’ names, for the same purpose. This newly proposed interleaver summarizes our previous experience with many recent interleavers. Fast Fourier transform OFDM (FFT-OFDM) and Discrete Wavelet Transform OFDM (DWT-OFDM) systems are used to test the efficiency of the suggested scheme in terms of burst channel error removal and BER reduction. Finally, the general complexity of the FRF interleaver is different from that of the helical interleaver in terms of hardware requirements. The performance of the proposed scheme was studied over different channel models. The obtained simulation results show a noticeable performance improvement over the conventional FFT-OFDM and the FFT-OFDM systems with the helical interleaver. Finally, the disadvantage of the proposed FRF interleaver is that it is more complex than the helical interleaver.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.