Abstract

All arthropods periodically molt to replace their exoskeleton (cuticle). Immediately after shedding the old cuticle, the neurohormone bursicon causes the hardening and darkening of the new cuticle. Here we show that bursicon, to our knowledge the first heterodimeric cystine knot hormone found in insects, consists of two proteins encoded by the genes burs and pburs (partner of burs). The pburs/burs heterodimer from Drosophila melanogaster binds with high affinity and specificity to activate the G protein-coupled receptor DLGR2, leading to the stimulation of cAMP signaling in vitro and tanning in neck-ligated blowflies. Native bursicon from Periplaneta americana is also a heterodimer. In D. melanogaster the levels of pburs, burs, and DLGR2 transcripts are increased before ecdysis, consistent with their role in postecdysial cuticle changes. Immunohistochemical analyses in diverse insect species revealed the colocalization of pburs- and burs-immunoreactivity in some of the neurosecretory neurons that also express crustacean cardioactive peptide. Forty-three years after its initial description, the elucidation of the molecular identity of bursicon and the verification of its receptor allow for studies of bursicon actions in regulating cuticle tanning, wing expansion, and as yet unknown functions. Because bursicon subunit genes are homologous to the vertebrate bone morphogenetic protein antagonists, our findings also facilitate investigation on the function of these proteins during vertebrate development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.