Abstract
Burnup study for Pakistan Research Reactor-1 (PARR-1), which is a typical swimming pool type MTR utilizing high density low enriched uranium fuel, was performed by using Fuel Cycle Analysis Program (FCAP). Existing equilibrium core of PARR-1, which is relatively economical but provides less neutron fluxes per unit power than the first equilibrium core, was formed by adding five more fuel elements in the first equilibrium core. This study shows that if the fuel loading is increased in the first equilibrium core of PARR-1 by replacing the fuel of density 3.28 gU/cm 3 by the fuel of density 4.00 gU/cm 3 then the new equilibrium core can provide 10% higher neutron fluxes at the irradiation sites and will also require 1.5 kg less fuel than that required for existing equilibrium core for one-year full power operation at 10 MW. The new core provides neutron fluxes at 13% lower cost and if the size of this core is further reduced by three fuel elements then this core can provide 20% higher thermal neutron flux at the central flux trap at 9% lower cost. A possible use of U-Mo (5 w/o Mo) fuel of density 8.5 gU/cm 3 in PARR-1 with an increase in existing water channel width from 2.1 to 2.45 mm (Ann. Nucl. Energy 32(1), 29–62) would provide up to 41% more thermal neutron flux at the central flux trap at 13% lower cost than the existing equilibrium core. The power peaking factors in these cores are similar to the power peaking factors of the existing equilibrium core and these cores are likely to operate within the safety constraints as defined for the existing equilibrium core of PARR-1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.