Abstract
The limitation of natural uranium resources and the improvement of economic values of nuclear reactors are important issues to be solved in the future development of these reactors. In our previous study, we presented an innovative design for simplifying a pebble bed reactor, and the optimization of this design showed that burnup values could be increased and natural uranium uses could be reduced. The purposes of the current study were to design a simplified pebble bed reactor by removing the unloading device from the reactor system and to further optimize the burnup characteristics of this reactor with a peu à peu fuel-loading scheme by introducing thorium in the fuel configuration as a fertile material. Another goal was to optimize the fuel composition so that the system could achieve even better burnup characteristics and use scarce uranium resources more efficiently. Using a specially developed computer code, we analyzed and optimized the performance of a 110-MWt simplified pebble bed reactor using a peu à peu fuel-loading scheme. An optimized design using 30% of fertile thorium mixed with uranium fuel with 15% 235U enrichment and a 7% packing fraction calculated to achieve a high burnup of 140 GWD/T for more than 21 years' operation time that could save 13 to 33% of natural uranium use compared with the savings noted in our previous study. Neutronic, burnup and fuel economic analysis for this optimized design are discussed in this study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.