Abstract
To make the most of unique properties of diamond and to diminish an influence its disadvantageous properties new diamond tool composites with ceramic bonding phase (MAX) has been proposed. Ti3(Si,Ge)C2 and Ti3SiC2 were produced by self-propagating high temperature synthesis (SHS). 3-6 µm (MDA, De Beers) diamond powder was mechanically mixed with 10 wt% Ti3(Si,Ge)C2 or 30 wt% Ti3SiC2, pressed and the compacts were sintered at 1962 °C at 8.0 GPa in a Bridgman-type high pressure apparatus. These mechanical properties were determined: Vickers hardness HV1, Young’s modulus, tensile strength, fracture toughness and wear resistance.Microstructure and phase composition were studied by scanning and transmission electron microscopy and X-ray and electron diffraction techniques. To improve the final quality of the AlCu4MgSi(A) alloy, balls of diamond-new composites were incorporated into the burnishing tools. The influence of burnishing parameters, such as burnishing force and feed, on surface geometry parameters were measured and profilograms of the surface roughness recorded.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.