Abstract

Abstract Oxygen-enriched air combustion of low-grade fuels with high inorganic matter is of great interest due to the efficient burning of such fuels and mitigation of emissions. For this purpose, this study aims to investigate the combined effects of oxygen enrichment and temperature on burnout levels. The oxygen-enriched air combustion performance of two Turkish lignites with different geological ages (early Miocene-Pliocene period Kutahya-Tuncbilek (KT) lignite and Pleistocene period Adiyaman-Golbasi (AG) lignite) was investigated in a horizontal tube reactor. The lignite samples were heated slowly (10 °C/min) to the temperatures of 200–600 °C for AG lignite and 200–800 °C for KT lignite under N2/O2 atmospheres with O2 ratios of 21, 30, 40, and 50 vol%. The solid residue remained after this oxidative heat treatment was characterized by proximate/ultimate analyses, higher heating value, (HHV) thermal analysis, Fourier transform infrared spectroscopy, (FTIR) X-ray diffraction (XRD), and scanning electron microscopy (SEM) techniques. It was concluded that AG lignite that is relatively younger lignite is more susceptible to the O2-enriched conditions as the treatment temperature or O2 concentration increases. It was also determined that the combined effects of temperature and O2 concentration are much more profound than the individual effects of these parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.