Abstract
Fire is an important management tool for both hazard reduction burning and maintenance of biodiversity. The impact of time since last fire on fauna is an important factor to understand as land managers often aim for prescribed burning regimes with specific fire-free intervals. However, our current understanding of the impact of time since last fire on fauna is largely unknown and likely dependent on vegetation type. We examined the responses of reptiles to fire age in banksia woodlands, and the interspersed melaleuca damplands among them, north of Perth, Western Australia, where the current prescribed burning regime is targeting a fire-free period of 8–12 years. The response of reptiles to fire was dependent on vegetation type. Reptiles were generally more abundant (e.g. Lerista elegans and Ctenophorus adelaidensis) and specious in banksia sites. Several species (e.g. Menetia greyii, Cryptoblepharus buchananii) preferred long unburnt melaleuca sites (>16 years since last fire, YSLF) compared to recently burnt sites (<12 YSLF). Several of the small elapids (e.g. the WA priority listed species Neelaps calonotus) were only detected in older-aged banksia sites (>16 YSLF). The terrestrial dragon C. adelaidensis and the skink Morethia obscura displayed a strong response to fire in banksia woodlands only. Highest abundances of the dragon were detected in the recently burnt (<7 YSLF) and long unburnt (>35 YSLF) banksia woodlands, while the skink was more abundant in older sites. Habitats from a range of fire ages are required to support the reptiles we detected, especially the longer unburnt (>16 YSLF) melaleuca habitat. Current burning prescriptions are reducing the availability of these older habitats.
Highlights
Fire is a management tool for landscape custodians of conservation reserves and remnant vegetation [1,2]
The key questions we addressed were: 1) Do reptile communities vary between vegetation types and fire-age categories based on prescribed burning management targets?; 2) Are there detectable seral responses of reptiles to time since last fire and microhabitat variables, such as litter cover; and 3) What are the implications of these relationships for current fire management objectives
A number of differences were observed in analysis of the microhabitat and vegetation structure variables between vegetation type and fire age (Table 1)
Summary
Fire is a management tool for landscape custodians of conservation reserves and remnant vegetation [1,2]. Prescribed burning is used to reduce the threat of wildfires [3,4,5], especially on the outskirts of towns and cities adjoining remnant vegetation where expanding infrastructure to accommodate a growing human population is associated with a high risk in wildfires, as evident in Mediterranean-type ecosystems [6,7]. An important consideration arising from fire and fauna research is that the fire-free period may be instrumental in structuring faunal communities [17,19,20]. The habitat accommodation model of succession [19] indicates that as vegetation structure recovers from a fire, there will be a corresponding predictable sequence of faunal recovery. Burning within a short successive time frame in tropical savannas reduces the availability of an important fruiting shrub upon which frugivorous birds feed [26]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.