Abstract
Graph burning is a model for the spread of social contagion. The burning number is a graph parameter associated with graph burning that measures the speed of the spread of contagion in a graph; the lower the burning number, the faster the contagion spreads. We prove that the corresponding graph decision problem is NP-complete when restricted to acyclic graphs with maximum degree three, spider graphs and path-forests. We provide polynomial time algorithms for finding the burning number of spider graphs and path-forests if the number of arms and components, respectively, are fixed. Finally, we describe a polynomial time approximation algorithm with approximation factor 3 for general graphs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.