Abstract
The molecular bases underlying burn- or critical illness-induced insulin resistance still remain unclarified. Muscle protein catabolism is a ubiquitous feature of critical illness. Akt/PKB plays a central role in the metabolic actions of insulin and is a pivotal regulator of hypertrophy and atrophy of skeletal muscle. We therefore examined the effects of burn injury on insulin-stimulated Akt/PKB activation in skeletal muscle. Insulin-stimulated phosphorylation of Akt/PKB was significantly attenuated in burned compared with sham-burned rats. Insulin-stimulated Akt/PKB kinase activity, as judged by immune complex kinase assay and phosphorylation status of the endogenous substrate of Akt/PKB, glycogen synthase kinase-3beta (GSK-3beta), was significantly impaired in burned rats. Furthermore, insulin consistently failed to increase the phosphorylation of p70 S6 kinase, another downstream effector of Akt/PKB, in rats with burn injury, whereas phosphorylation of p70 S6 kinase was increased by insulin in controls. The protein expression of Akt/PKB, GSK-3beta, and p70 S6 kinase was unaltered by burn injury. However, insulin-stimulated activation of ERK, a signaling pathway parallel to Akt/PKB, was not affected by burn injury. These results demonstrate that burn injury impairs insulin-stimulated Akt/PKB activation in skeletal muscle and suggest that attenuated Akt/PKB activation may be involved in deranged metabolism and muscle wasting observed after burn injury.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Endocrinology and Metabolism
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.