Abstract

Sepsis remains one of the leading causes of death in burn patients who survive the initial insult of injury. Disruption of the intestinal epithelial barrier has been shown after burn injury; this can lead to the translocation of bacteria or their products (e.g., endotoxin) from the intestinal lumen to the circulation, thereby increasing the risk for sepsis in immunocompromised individuals. Since the maintenance of the epithelial barrier is largely dependent on the intestinal microbiota, we examined the diversity of the intestinal microbiome of severely burned patients and a controlled mouse model of burn injury. We show that burn injury induces a dramatic dysbiosis of the intestinal microbiome of both humans and mice and allows for similar overgrowths of Gram-negative aerobic bacteria. Furthermore, we show that the bacteria increasing in abundance have the potential to translocate to extra-intestinal sites. This study provides an insight into how the diversity of the intestinal microbiome changes after burn injury and some of the consequences these gut bacteria can have in the host.

Highlights

  • The gastrointestinal tract contains over 100 trillion microbes, termed the microbiota, that provide numerous benefits for the host such as metabolism and de novo synthesis of nutrients, protection against pathogenic microbes, and immune development and function [1]

  • We show that burn injury alters the structure of the intestinal microbiome promoting the overgrowth of specific Gram-negative aerobic bacteria, but within the context of fairly limited effects on overall microbial diversity

  • Examining the structure of the intestinal microbiome of severely burned patients, we found that injury promotes the overgrowth of many under representative taxa while reducing the overall healthy diversity of bacteria

Read more

Summary

Introduction

The gastrointestinal tract contains over 100 trillion microbes, termed the microbiota, that provide numerous benefits for the host such as metabolism and de novo synthesis of nutrients, protection against pathogenic microbes, and immune development and function [1]. Gut Microbiome in Burn Injury removed from the dataset, and single FASTQ files, containing both forward and reverse reads were provided to the SRA

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.