Abstract

Expedient primary excision of deep dermal and full-thickness burn wounds with subsequent skin grafting is the standard of care in most burn institutions, but differentiating full-thickness from partial-thickness burns is often difficult. Because accurate early assessment of burn depth may improve care, a variety of technical methods have attempted to measure burn depth but these methods have had limited success. We describe a new technique to determine burn depth that uses infrared (840- to 850-nm) fluorescence emission from intravenously administered indocyanine green following excitation with infrared (780 nm) and UV light (369 nm). Full-thickness and partial-thickness burns in hairless rat skin were distinguished based on the infrared-induced and UV-induced fluorescence intensity ratios relative to normal, unburned skin immediately after the burn and on post-burn days 1 through 3 and 7. Dual-wavelength excitation of indocyanine green infrared fluorescence can delineate full-thickness from partial-thickness burns at an early date, allowing prognosis, surgical planning, and early primary excision and grafting.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call