Abstract

Buried water molecules in the structurally homologous family of eukaryotic serine proteases were examined to determine whether buried waters and their protein environments are conserved in these proteins. We found 16 equivalent water sites conserved in trypsin/ogen, chymotrypsin/ogen, elastase, kallikrein, thrombin, rat tonin and rat mast cell protease, and 5 additional water sites in enzymes which share the primary specificity of trypsin. Based on an alignment of 30 serine protease sequences, it appears that the protein environments of these 21 conserved buried waters are highly conserved. The protein environments of buried waters are comprised primarily of atoms from highly conserved residues or main chain atoms from nonconserved residues. In one instance, the protein environment of a water is conserved even in the presence of an unlikely Pro/Ala substitution. We also note 3 instances in which a histidine side chain substitutes for water, suggesting that the structural role of water at these sites is satisfied by the presence of an alternative hydrogen bonding partner. Buried waters appear to be integral structural components of these proteins and should be incorporated into protein structures predicted on the basis of sequence homology to this family, including the catalytic domains of coagulation proteases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.