Abstract

This paper presents observations of a buried sphere detected with a low-frequency (5-35-kHz) synthetic aperture sonar (SAS). These detections were made with good signal-to-noise ratios (SNRs) at both above and below the critical grazing angle. The raw data for the below-critical-grazing angle detection shows that the acoustic penetration is skewed by the 29deg offset of the ripple field relative to the sonar path. This observed skew is in agreement with T-matrix calculations carried out to model penetration into the bottom via ripple diffraction. Additionally, measured SNRs over different frequency bands are compared to predictions made using both first- and second-order perturbation theory for ripple diffraction. Both the data and the models indicate a peak detection region around 25 kHz for the environmental conditions present during the test. These results confirm that ripple diffraction can play a critical role in long range (subcritical angle) buried target detection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.