Abstract
ABSTRACTMetallic transition metal aluminides and gallides with the CsCI structure and semi-metallic rare earth monopnictides with the NaCi structure have been grown as buried conducting layers in III-V compound semiconductor heterostructures. The criteria for achieving (100) oriented epitaxial growth on (100)111-V semiconductor surfaces is different for each class of materials. The methods used to achieve III-V/metal/llI-V heteroepitaxial structures are discussed here with emphasis on the different approaches needed for the aluminides or gallides and the monopnictides. Work producing exact lattice matching between the buried metal and surrounding semiconductor layers makes possible the separation of lattice mismatch effects from those due to other interface parameters. Results to date indicate that defect structures in the overgrown semiconductor layers arise more because of differences in crystal symmetry, interface chemistry and bonding across the interface than lattice mismatch.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.