Abstract
Wide-bandgap perovskite sub-cells (WPSCs), one of the most crucial components of perovskite-based tandem solar cells (PTSCs), play a critical role in determining the performance of tandem devices. However, confined by the compromised crystallization properties of wide-bandgap perovskites, WPSCs exhibit significantly lower efficiency than their theoretical limit. In particular, for n-i-p structured all-inorganic WPSCs (AIWPSCs), severe nonradiative recombination due to the buried interface defects severely decreases the photovoltaic performance. Herein, an efficient propionate group (PA-) based ionic liquid, methylamine propionate (MAPA), is introduced into the perovskite/electron-transport layer (ETL) interface to passivate the buried interface of AIWPSCs. The intense interaction between the PA- and Pb-Pb dimer effectively heals the defects at the buried interface and facilitates a more homogeneous elemental distribution in the perovskite film. As a result, CsPbI2.2Br0.8-based AIWPSCs with a high power conversion efficiency (PCE) of 18.29% and open-circuit voltage (VOC) of 1.33V are obtained, which illustrates the superiority of MAPA in optimizing the performance of AIWPSCs. Moreover, by integrating these AIWPSCs with small-bandgap organic solar cells (SOSCs), high performance n-i-p structured all-inorganic perovskite/organic tandem solar cells (AIPOTSCs) with a high PCE of 23.19% and VOC of 2.08V are also achieved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.