Abstract

We review the Burghelea conjecture, which constitutes a full computation of the periodic cyclic homology of complex group rings, and its relation to the algebraic Baum–Connes conjecture. The Burghelea conjecture implies the Bass conjecture. We state two conjectures about groups of finite asymptotic dimension, which together imply the Burghelea conjecture for such groups. We prove both conjectures for many classes of groups. It is known that the Burghelea conjecture does not hold for all groups, although no finitely presentable counterexample was known. We construct a finitely presentable (even type [Formula: see text]) counterexample based on Thompson’s group [Formula: see text]. We construct as well a finitely generated counterexample with finite decomposition complexity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.