Abstract

The purpose of this article is to study the Burgers and Black–Merton–Scholes equations with real time variable and complex spatial variable. The complexification of the spatial variable in these equations is made by two different methods which produce different equations: first, one complexifies the spatial variable in the corresponding (real) solution by replacing the usual sum of variables (translation) by an exponential product (rotation) and secondly, one complexifies the spatial variable in the corresponding evolution equation and then one searches for analytic and non-analytic solutions. By both methods, new kinds of evolution equations (or systems of equations) in two dimensional spatial variables are generated and their solutions are constructed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.