Abstract

Although the genetic architecture of amyotrophic lateral sclerosis (ALS) is incompletely understood, recent findings suggest a complex model of inheritance in ALS, which is consistent with a multistep pathogenetic process. Therefore, the aim of our work is to further explore the architecture of ALS using targeted next generation sequencing (NGS) analysis, enriched in motor neuron diseases (MND)-associated genes which are also implicated in axonal hereditary motor neuropathy (HMN), in order to investigate if disease expression, including the progression rate, could be influenced by the combination of multiple rare gene variants. We analyzed 29 genes in an Italian cohort of 83 patients with both familial and sporadic ALS. Overall, we detected 43 rare variants in 17 different genes and found that 43.4% of the ALS patients harbored a variant in at least one of the investigated genes. Of note, 27.9% of the variants were identified in other MND- and HMN-associated genes. Moreover, multiple gene variants were identified in 17% of the patients. The burden of rare variants is associated with reduced survival and with the time to reach King stage 4, i.e., the time to reach the need for percutaneous endoscopic gastrostomy (PEG) positioning or non-invasive mechanical ventilation (NIMV) initiation, independently of known negative prognostic factors. Our data contribute to a better understanding of the molecular basis of ALS supporting the hypothesis that rare variant burden could play a role in the multistep model of disease and could exert a negative prognostic effect. Moreover, we further extend the genetic landscape of ALS to other MND-associated genes traditionally implicated in degenerative diseases of peripheral axons, such as HMN and CMT2.

Highlights

  • Amyotrophic lateral sclerosis (ALS), known as Lou Gehrig’s disease, is the most frequent and severe disease within the widely heterogeneous spectrum of adult-onset motor neuron diseases (MND)

  • Our results show that rare variant burden is associated with reduced survival and the time to reach King stage 4, independently of known negative prognostic factors

  • A direct comparison with previous studies is methodologically difficult, since our cohort was clinic-based with no strict inclusion criteria and we could not address whether differences in populations could be involved

Read more

Summary

Introduction

Amyotrophic lateral sclerosis (ALS), known as Lou Gehrig’s disease, is the most frequent and severe disease within the widely heterogeneous spectrum of adult-onset motor neuron diseases (MND) It is defined by the degeneration of both upper motor neurons (UMN) and lower motor neurons (LMN) in the cerebral cortex, brain stem, and spinal cord [1,2]. The genetic hereditability of sALS has been estimated to be more than 60% [5] and the contribution of rare variants with intermediate to large effects is increasingly recognized in the context of an oligogenic model of the disease [2,6,7] According to this hypothesis, each co-occurring variant alone could be tolerated but when combined with a second variant would exceed the threshold required for neurodegeneration [8]. Some aspects of the ALS phenotype, are shared with other neurodegenerative, neuropsychiatric, and neuromuscular diseases, such as axonal hereditary Charcot-Marie-Tooth neuropathy (CMT2), distal hereditary motor neuropathy (dHMN), or hereditary spastic paraplegia (HSP), which could implicate similar genes in their pathology [1,2,9,10,11]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.