Abstract

Buoyant decompression melting instabilities in regions of partially molten upper mantle have been proposed to be an important process that might account for some characteristics of intraplate volcanism on Earth and other terrestrial planets. The instability is driven by variations in the melting rate within a partially molten layer whenever a relative decrease in density accompanies decompression melting of ascending mantle. Here, the development of buoyant decompression melting instabilities in a plane layer of passively upwelling and partially melting mantle beneath diffusely extending lithosphere is studied using numerical convection models covering a wide range of physical parameters. We find that the occurrence and nature of these instabilities in such a scenario is strongly affected by the rate of extension and melt percolation, as well as depth distribution of solid density variations arising from melt depletion. In some cases, instabilities do not occur during extension, but only develop after extension has slowed or stopped completely. This behavior creates two pulses of magma generation due to passive upwelling accompanying extension followed by the subsequent instability and is favored by a faster rate of extension, higher mantle viscosity, higher rate of melt percolation, and smaller amount of solid residuum depletion‐derived buoyancy. Larger degrees of solid density changes accompanying melt depletion can enhance the instability of partially molten mantle during extension but decrease the cumulative volume of generated melt. This kind of behavior modifies the conventional expectation of spatially and temporally correlated volcanism and extension and may lend insight into the observed increase in localized volcanic activity following Miocene Basin and Range extension in the western United States.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call