Abstract

Numerical solutions have been obtained for three-dimensional buoyant flow of air under laminar conditions in a slender, square-section cavity lying parallel to the gradient vector of the temperature field in which it is embedded. Velocity and temperature profiles in the cavity are presented in support of a flow model in which primary and secondary circulation are reconciled by an advective mechanism in the central region. The effect of the temperature gradient, represented by a Rayleigh number, is explored when the cavity is horizontal. The effect of inclining the cavity above and below this horizontal position is also explored. Comparisons are made with related work on cylindrical and two-dimensional rectangular cavities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.