Abstract

Particle Image Velocimetry (PIV) and Particle Tracking Velocimetry (PTV) have been employed to investigate the dynamics of finite-size spherical particles, slightly heavier than the carrier fluid, in a horizontal turbulent square duct flow. Interface resolved Direct Numerical Simulations (DNS) have also been performed with the Immersed Boundary Method (IBM) at the same experimental conditions, bulk Reynolds number $Re_{2H}$ = 5600, duct height to particle size ratio $2H/d_p$ = 14.5, particle volume fraction $\Phi$ = 1% and particle to fluid density ratio $\rho_p/\rho_f$ = 1.0035. A good agreement has been observed between experiments and simulations in terms of the overall pressure drop, concentration distribution and turbulent statistics of the two phases. Additional experimental results considering two particle sizes, $2H/d_p$ = 14.5 and 9 and multiple $\Phi$ = 1, 2, 3, 4 and 5% are reported at the same $Re_{2H}$. The pressure drop monotonically increases with the volume fraction, almost linearly and nearly independently of the particle size for the above parameters. However, despite the similar pressure drop, the microscopic picture, the fluid velocity statistics, differs significantly with the particle size. This one-to-one comparison between simulations and experiments extends the validity of interface resolved DNS in complex turbulent multiphase flows and highlights the ability of experiments to investigate such flows in considerable details, even in regions where the local volume fraction is relatively high.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.