Abstract

This paper treats the buoyant convection of a molten semiconductor in a cylindrical crucible with a vertical axis, with a uniform vertical magnetic field, and with a non-axisymmetric temperature. Most previous treatments of melt motions with vertical magnetic fields have assumed that the temperature and buoyant convection were axisymmetric. In reality, the temperature and resultant buoyant convection often deviate significantly from axisymmetry. For a given non-axisymmetric temperature, the electromagnetic suppression of the axisymmetric part of the buoyant convection is stronger than that of the non-axisymmetric part, so that the deviation from an axisymmetric melt motion increases as the magnetic field strength is increased. The non-axisymmetric part of the buoyant convection includes relatively strong azimuthal velocities adjacent to the electrically insulating vertical crucible wall, because this wall blocks the radial electric currents needed to suppress azimuthal velocities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.