Abstract

In this paper, thermal characteristics of natural convection in a rectangular cavity heated from below with water-based nanofluids containing alumina (Al 2O 3 nanofluids) are theoretically investigated with Jang and Choi’s model for predicting the effective thermal conductivity of nanofluids and various models for the effective viscosity. To validate theoretical results, we compare theoretical results with experimental results presented by Putra et al. It is shown that the experimental results are put between a theoretical line derived from Jang and Choi’s model and Einstein’s model and a theoretical line from Jang and Choi’s model and Pak and Cho’s correlation. In addition, the effects of the volume fraction, the size of nanoparticles, and the average temperature of nanofluids on natural convective instability and heat transfer characteristics of water-based Al 2O 3 nanofluids in a rectangular cavity heated from below are theoretically presented. Based on the results, this paper shows that water-based Al 2O 3 nanofluids is more stable than base fluid in a rectangular cavity heated from below as the volume fraction of nanoparticles increases, the size of nanoparticles decreases, or the average temperature of nanofluids increases. Finally, we theoretically show that the ratio of heat transfer coefficient of nanofluids to that of base fluid is decreased as the size of nanoparticles increases, or the average temperature of nanofluids is decreased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.