Abstract

Consideration is given to the buoyancy effects on the fully developed gaseous slip flow in a vertical rectangular microduct. Two different cases of the thermal boundary conditions are considered, namely uniform temperature at two facing duct walls with different temperatures and adiabatic other walls (case A) and uniform heat flux at two walls and uniform temperature at other walls (case B). The rarefaction effects are treated using the first-order slip boundary conditions. By means of finite Fourier transform method, analytical solutions are obtained for the velocity and temperature distributions as well as the Poiseuille number. Furthermore, the threshold value of the mixed convection parameter to start the flow reversal is evaluated. The results show that the Poiseuille number of case A is an increasing function of the mixed convection parameter and a decreasing function of the channel aspect ratio, whereas its functionality on the Knudsen number is not monotonic. For case B, the Poiseuille number is decreased by increasing each of the mixed convection parameter, the Knudsen number, and the channel aspect ratio.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.