Abstract

AbstractThe month‐to‐month variation of the winter South China Sea (SCS) western boundary current (WBC) along the western slope is examined using drifter observations, satellite altimetry data, and an ocean reanalysis. The most surprising phenomenon is that the WBC velocity at the sea surface reaches the maxima in November–December, which cannot be explained by wind forcing and Kuroshio intrusion alone. Analysis results demonstrate that buoyancy effect should be considered to explain the month‐to‐month variation besides wind‐Kuroshio effects. In winter, cold‐and‐salty advection by the WBC from the north decreases/reverses the zonal density gradient in the seasonal pycnocline induced by wind forcing and Kuroshio intrusion and therefore weakens wind‐Kuroshio‐induced WBC. Buoyancy effect on the winter SCS WBC is opposite to wind‐Kuroshio effects. In addition, buoyancy effect reaches the maximum in January, which is concurrent with wind‐Kuroshio effects. As a result of their competition, the zonal density gradient in the seasonal pycnocline is maximum in November–December, resulting in the maximum surface velocity along the western slope occurring in November‐December. This study demonstrates the importance of buoyancy forcing to the winter SCS WBC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.