Abstract
Abstract Numerical modeling was performed to investigate the buoyancy effect on developing turbulent flow and the heat transfer characteristics of saturated water in a helical pipe with finite pitch. The renormalization group (RNG) κ–ε model was used to account for the turbulent flow and heat transfer in the helical pipe at a constant wall temperature with or without buoyancy force effect. A control volume method with second-order accuracy was used to numerically solve the three-dimensional full elliptic governing equations for this problem. The O-type nonuniform structured grid system was adopted to discretize the computation domain. The Boussinesq approximation was applied to deal with the buoyancy. This study explored the influence of buoyancy on the developing heat transfer along the helical pipe. Based on the results of this research, the velocity, temperature, and Nusselt number are presented graphically and analyzed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.