Abstract

The primary purpose of this study is to investigate the buoyancy mixed convection flow of non-Newtonian fluid over a flat plate. The addition of a small amount of polymers into a Newtonian solvent raises the viscosity and generates elastic properties in the resulting solution. To study the behavior of these viscoelastic fluids, finite extensible nonlinear elastic constitutive equations along with Peterlin’s closure (FENE-P model) are used. Along with mass, momentum and energy equations, viscoelastic constitutive equations are also used to examine the rheology of the resulting polymer solution. Similarity transformations are introduced to convert the governing equations into nondimensional forms. The nondimensional equations are solved using the fourth-order boundary value solver in MATLAB. The distribution of the velocity and temperature fields is displayed graphically under the impact of various involved parameters like Eckert number (Ec), Richardson number (Ri), Prandtl number (Pr). The addition of polymers increases the friction among the different fluid layers, leading to viscous dissipation in the fluid. The presented model’s validation is done with the Newtonian fluid to verify the results. The Nusselt number is also computed and analyzed to study the heat transfer rate. The effects of viscoelastic parameters like Weissenberg number (W[Formula: see text]), polymer viscosity ratio ([Formula: see text]) and polymer extensibility parameter ([Formula: see text]) on heat transfer rate are also shown graphically. Buoyancy parameter (Richardson number, [Formula: see text]) represents the dominance of natural convection relative to that of forced convection. The temperature of the resulting fluid falls with the increase in the value of Ri. The Nusselt number tends to decrease with increasing Richardson number when viscous dissipation effects are active.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call