Abstract

Traveling waves in an extended reactor, whose width cannot be neglected, represent a three-dimensional (3D) reaction-diffusion-convection system. We investigate the effects of buoyancy-driven convection in such a setting. The 3D waves traveled through horizontal layers of the iodate-arsenous acid (IAA) reaction solution containing excess of arsenous acid. The depth of the reaction solution was the examined parameter. An increase in the intensity of buoyancy-driven flow caused an increase of the traveling wave velocities. Convection distorted the front of the chemical waves. For layers deeper than h>13 mm, heat release became smaller than heat production causing the emergence of Rayleigh-Bénard convection cells. At the interface, a dependency of wave shape on solution depth was observed. For h<7 mm, the waves adopted a stable V-like shape, while for h>13 mm a parabolic shape dominated. For 7<h<13 mm, both shapes were realized with the same probability. Finally, an intermittent switch between stoichiometric regimes is observed as an unexpected effect of the buoyancy-driven convection. The switch is expressed by iodine enrichment in the product. Hence, the experiments demonstrate that the buoyancy-driven convective flow can cause long-lived, but nevertheless transient, changes in the chemical composition by inducing a local transition between different regimes of the IAA reaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.