Abstract

We study the equilibrium shape of a liquid drop resting on top of a liquid surface, i.e., a floating lens. We consider the surface tension forces in non--wetting situations (negative spreading factor), as well as the effects of gravity. We obtain analytical expressions for the drop shape when gravity can be neglected. Perhaps surprisingly, when including gravity in the analysis, we find two different families of equilibrium solutions for the same set of physical parameters. These solutions correspond to drops whose center of mass is above or below the level of the external liquid surface. By means of energetic considerations we determine the family that has the smallest energy, and therefore is the most probable to be found in nature. A detailed explanation of the geometrical differences between the both types of solutions is provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.