Abstract

For more than hundred years, various concepts were developed to understand the fields of geometric objects and invariant differential operators between them for conformal Riemannian and projective geometries. More recently, several general tools were presented for the entire class of parabolic geometries, i.e., the Cartan geometries modelled on homogeneous spaces G / P G/P with P P a parabolic subgroup in a semi-simple Lie group G G . Similarly to conformal Riemannian and projective structures, all these geometries determine a class of distinguished affine connections, which carry an affine structure modelled on differential 1-forms Υ \Upsilon . They correspond to reductions of P P to its reductive Levi factor, and they are called the Weyl structures similarly to the conformal case. The standard definition of differential invariants in this setting is as affine invariants of these connections, which do not depend on the choice within the class. In this article, we describe a universal calculus which provides an important first step to determine such invariants. We present a natural procedure how to construct all affine invariants of Weyl connections, which depend only tensorially on the deformations Υ \Upsilon .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.