Abstract

Super-coiled polymer (SCP) artificial muscles have many attractive properties, such as high energy density, large contractions, and good dynamic range. To fully utilize them for robotic applications, it is necessary to determine how to scale them up effectively. Bundling of SCP actuators, as though they are individual threads in woven textiles, can demonstrate the versatility of SCP actuators and artificial muscles in general. However, this versatility comes with a need to understand how different bundling techniques can be achieved with these actuators and how they may trade off in performance. This letter presents the first quantitative comparison, analysis, and modeling of bundled SCP actuators. By exploiting weaving and braiding techniques, three new types of bundled SCP actuators are created: woven bundles, two-dimensional, and three-dimensional braided bundles. The bundle performance is adjustable by employing different numbers of individual actuators. Experiments are conducted to characterize and compare the force, strain, and speed of different bundles, and a linear model is proposed to predict their performance. This work lays the foundation for model-based SCP-actuated textiles, and physically scaling robots that employ SCP actuators as the driving mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.