Abstract

A specialized variant of bundle methods suitable for large-scale problems with separable objective is presented. The method is applied to the resolution of a stochastic unit-commitment problem solved by Lagrangian relaxation. The model includes hydro- as well as thermal-powered plants. Uncertainties lie in the demand, which evolves in time according to a tree of scenarios. Dual variables are preconditioned by using probabilities associated to nodes in the tree The approach is illustrated by numerical results, obtained on a model of the French production mix over a time horizon of 10 days and 1 month.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.