Abstract

Increased use of digital imagery has facilitated the opportunity to use features, in addition to points, in photogrammetric applications. Straight lines are often present in object space, and prior research has focused on incorporating straight–line constraints into bundle adjustment for frame imagery. In the research reported in this paper, object–space straight lines are used in a bundle adjustment with self–calibration. The perspective projection of straight lines in the object space produces straight lines in the image space in the absence of distortions. Any deviations from straightness in the image space are attributed to various distortion sources, such as radial and decentric lens distortions. Before incorporating straight lines into a bundle adjustment with self–calibration, the representation and perspective transformation of straight lines between image space and object space should be addressed. In this investigation, images of straight lines are represented as a sequence of points along the image line. Also, two points along the object–space straight line are used to represent that line. The perspective relationship between image– and object–space lines is incorporated in a mathematical constraint. The underlying principle in this constraint is that the vector from the perspective centre to an image point on a straight–line feature lies on the plane defined by the perspective centre and the two object points defining the straight line. This constraint has been embedded in a software application for bundle adjustment with self–calibration that can incorporate point as well as straight–line features. Experiments with simulated and real data have proved the feasibility and the efficiency of the algorithm proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.