Abstract

We present the design and implementation of a new inexact Newton type algorithm for solving large-scale bundle adjustment problems with tens of thousands of images. We explore the use of Conjugate Gradients for calculating the Newton step and its performance as a function of some simple and computationally efficient preconditioners. We show that the common Schur complement trick is not limited to factorization-based methods and that it can be interpreted as a form of preconditioning. Using photos from a street-side dataset and several community photo collections, we generate a variety of bundle adjustment problems and use them to evaluate the performance of six different bundle adjustment algorithms. Our experiments show that truncated Newton methods, when paired with relatively simple preconditioners, offer state of the art performance for large-scale bundle adjustment. The code, test problems and detailed performance data are available at .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.