Abstract

It has been shown that γ-aminobutyric acid exerts excitatory actions on the immature brain due to the increased expression of Na(+)-K(+)-2Cl(-) cotransporter isoform 1. The authors sought to clarify whether midazolam, a γ-aminobutyric acid-mimetic hypnotic agent, causes neuronal excitation that can be blocked by bumetanide, a selective inhibitor of Na(+)-K(+)-2Cl(-) cotransporter isoform 1. Furthermore, the authors examined whether bumetanide potentiates the sedative effects of midazolam in neonatal rats. The authors measured the effects of midazolam with or without bumetanide on the cytosolic Ca(2+) concentration ([Ca](2+)(i)) in hippocampal slices (n=3 in each condition) from rats at postnatal days 4, 7, and 28 (P4, P7, and P28) using fura-2 microfluorometry. Neuronal activity in the hippocampus and thalamus after intraperitoneal administration of midazolam with or without bumetanide was estimated by immunostaining of phosphorylated cyclic adenosine monophosphate-response element-binding protein (n=12 in each condition). Furthermore, the authors assessed effects of bumetanide on the sedative effect of midazolam by measuring righting reflex latency (n=6 in each condition). Midazolam significantly increased [Ca](2+)(i) in the CA3 area at P4 and P7 but not at P28. Bumetanide inhibited midazolam-induced increase in [Ca](2+)(i). Midazolam significantly up-regulated phosphorylated cyclic adenosine monophosphate-response element-binding protein expression in a bumetanide-sensitive manner in the hippocampus at P7 but not P28. Bumetanide enhanced the sedative effects of midazolam in P4 and P7 but not P28 rats. These results suggest that γ-aminobutyric acid A receptor-mediated excitation plays an important role in attenuated sedative effects of midazolam in immature rats.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call