Abstract
The ability of flower visitors to monitor returns when collecting pollen from flowers has been seldom studied despite the importance of pollen as a food resource, particularly for bees. Californian populations of Mimulus guttatus are polymorphic for pollen quality: many plants produce a high proportion of cytoplasmless pollen grains that render the grains incapable of fertilizing ovules or of supporting bees nutritionally. We found that different genotypes maintained a consistent proportion of inviable pollen within a genotype and over time. The number of pollen grains per flower was also consistent within a plant at each date but declined over time. We studied the ability of British bumble bees (Bombus spp.) to discriminate among plants of Mimulus guttatus on the basis of pollen quality and quantity at three scales: indoors with choices of two genotypes, in outdoor plots of several genotypes that varied in pollen quality, and outdoors at a whole-patch scale where two patches of plants differed in quality. We found that bees could discriminate among plants on the basis of pollen quality provided that flowers still retained most of the pollen. In the two-genotype trials, bees chose genotypes primarily on the quantity of viable pollen, and nectar was much less important. Similarly, where patches of low- and high-pollen quality plants were established, bees responded by visiting the high-quality patch more often and by visiting more flowers within the patch. However, the results from the outdoor plots that contained genotypes of varying phenotypes were inconsistent. A meta-analysis of a large number of separate plots showed that the overall correlation between visitation rate and pollen quality was significant, but variation among plots was also significant. A possible explanation for this inconsistency was suggested in a greenhouse trial in which we showed that, when foraging density was high, depletion of the standing crop of pollen happened quickly, and this reduced the ability of the foragers to choose the higher-quality genotypes. The results have implications for the evolution of pollen production in Mimulus guttatus and reward production in other plants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.