Abstract

Populations of wild insect pollinators such as bumble bees are threatened worldwide, which compromises pollinator-dependent crop yields. Intentionally planting wildflower patches in agricultural landscapes can support these populations and increase the pollination of nearby crops via the “spillover effect” (i.e., the exporter hypothesis), but may also distract bees from the crops and reduce their pollination via the “Circe principle” (i.e., the aggregation hypothesis). Considering the potentially high costs of these management strategies and the necessity to support wild insect pollinators in the Anthropocene, there is a pressing need to provide simulation tools that can inform best practices for wildflower plantings in agro-ecosystems. We developed a spatially implicit ordinary differential equations (ODEs) model specifically designed to determine the optimal wildflower-to-crop ratio as a function of wildflower patch (i) attractiveness, (ii) nutritional benefits, and (iii) blooming period relative to the crop. The model represents the population dynamics of a bumble bee colony and floral resources (crop and wildflower) in the landscape and nest during one harvesting season. We conduct a full factorial simulation experiment to identify the optimal characteristics of the wildflower patch (i.e., blooming period, attractiveness, relative abundance) that maximise crop yield via the enhancement of the number of bees pollinating crop flowers in a fictional blueberry farm. Our results suggest that providing highly attractive and nutritive wildflower resources before and not during the crop blooming season is the most beneficial strategy. When both flower types are in competition, pollination services can decrease, either when wildflowers are too attractive, or if they provide less benefits to the bees than the crop due to a trade-off between resources quality versus quantity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.