Abstract

Cockpit bulletproof floor and subfloor of the helicopter were modelled in a simplified manner, and the display dynamics analysis was combined with the statics analysis to investigate the responses of the composite bulletproof floor and determine its boundary support reaction force. Numerical simulations of projectiles with various velocities and incidence angles impacting on the target plate were investigated. The floor support reaction force was loaded on the subfloor, and the response of the subfloor under the impact of projectile was studied indirectly using the statics analysis tool. Moreover, the optimisation strategy was conducted based on the above strategy. The design variables of the subfloor were analysed using the defined correlation, the mass condition, the strength condition and the correlation ratio equations to reasonably reduce the range of design variables. Different optimisation strategies were adopted to enhance the ballistic performance of the subfloor. A combined patch-MOGA-AMO optimisation strategy was developed to achieve high-efficiency and high-quality optimisation, which had a proper computation speed and achieved suitable optimisation results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call