Abstract
Abstract. This study presents a Digital Terrain Model extraction method called Bulldozer. The only required input of Bulldozer is a Digital Surface Model generated from any sensors (usually optical or LIDAR) with any kind of software. After reviewing both the initial DrapCloth algorithm (Zhang et al., 2016) and its multi scale implementation (Leotta et al., 2019), some issues have been highlighted when extracting DTM from stereo satellite images such as the lost of ground adhesion under rising terrain areas, the appearance of sinks due to correlation issues when computing the DSM and finally the lack of scalability when processing large input data. Bulldozer has been developed to tackle all these issues and proposes a full automatic scalable pipeline composed of a pre-processing step to clean noisy DSMs by detecting and smoothing disturbed areas, a DTM extraction step based on a modified DrapCloth algorithm to stick to the ground under rising terrain and a post-processing step to smooth sharp sinks. The scalability has been solved using a tiling strategy and the definition of a stability margin that ensures identical results to those obtained if the whole DSM would have been processed at once in memory. As a result, Bulldozer outperforms its concurrent with respect to runtime execution while providing high quality DTMs over various types of landscapes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.