Abstract
We synthesized two 4Me-PNP ligands which block metal-ligand cooperation (MLC) with the Ru center and compared their Ru complex chemistry to their two traditional analogues used in acceptorless alcohol dehydrogenation catalysis. The corresponding 4Me-PNP complexes, which do not undergo dearomatization upon addition of base, allowed us to obtain rare, albeit unstable, 16 electron mono-CO Ru(0) complexes. Reactivity with CO and H2 allows for stabilization and extensive characterization of bis-CO Ru(0) 18 electron and Ru(II) cis and trans dihydride species that were also shown to be capable of C(sp2 ) -H activation. Reactivity and catalysis are contrasted to non-methylated Ru(II) species, showing that an MLC pathway is not necessary, with dramatic differences in outcomes during catalysis between i Pr and t Bu PNP complexes within each of the 4Me and non-methylated backbone PNP series being observed. Unusual intermediates are characterized in one of the new and one of the traditional complexes, and a common catalysis deactivation pathway was identified.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.