Abstract

Use of bulky ligands (BLs) in the synthesis of metal nanoparticles (NPs) gives smaller core sizes, sharpens the size distribution, and alters the discrete sizes. For BLs, the highly curved surface of small NPs may facilitate growth, but as the size increases and the surface flattens, NP growth may terminate when the ligand monolayer blocks BLs from transporting metal atoms to the NP core. Batches of thiolate-stabilized Au NPs were synthesized using equimolar amounts of 1-adamantanethiol (AdSH), cyclohexanethiol (CySH), or n-hexanethiol (C6SH). The bulky CyS- and AdS-stabilized NPs have smaller, more monodisperse sizes than the C6S-stabilized NPs. As the bulkiness increases, the near-infrared luminescence intensity increases, which is characteristic of small Au NPs. Four new discrete sizes were measured by MALDI-TOF mass spectrometry, Au(30)(SAd)(18), Au(39)(SAd)(23), Au(65)(SCy)(30), and Au(67)(SCy)(30). No Au(25)(SAd)(18) was observed, which suggests that this structure would be too sterically crowded. Use of BLs may also lead to the discovery of new discrete sizes in other systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.