Abstract

Peer-to-peer (P2P) systems are now very popular. Current P2P systems are broadly of two kinds, structured and unstructured. The tree structured P2P systems used technologies such as distributed hash tables (DHT) and hierarchical clustering can search the required target quickly, however, in a tree, the internal node has a higher load and its leave or crash often causes a large population of its offspring's problems, so that in the highly dynamic Internet environment the tree structure may still suffer frequent breaks. On the other hand, most widely used unstructured P2P networks rely on central directory servers or massive message flooding, clearly not scalable. So, we consider both of the above systems' advantages and disadvantages and realize that in the P2P systems one node may fail easily, but that when a number of nodes organized as a set, which we call "super node", the set is robust. Super nodes can be created and updated aware of topology-aware, and used with simple protocol such as flooding or "servers" to exchange information. Furthermore the entire robust super node can be organized into exquisite tree structure. By using this overlay network architecture, P2P systems are robust, efficient, scalable and secure. The simulation results demonstrated that our architecture greatly reduces the alteration time of the structure while decreasing the average delay time, compared to the common tree structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.