Abstract

Tin dioxide (SnO2) nanorods have been successfully synthesized in bulk quantity by a calcining process based on annealing precursor powders in which sodium chloride, sodium carbonate, and stannic chloride were homogeneously mixed. Transmission electron microscopy shows that the as-prepared nanorods are structurally perfect and uniform, with widths of 10–25nm, and lengths of several hundreds nanometers to a few micrometers. X-ray diffraction and energy-dispersive X-ray spectroscopy analysis indicate that the as-prepared nanorods have the same crystal structure and chemical composition found in the tetragonal rutile form of SnO2. Selected area electron diffraction and high-resolution transmission electron microscopy reveal that the as-prepared nanorods grow along the [110] crystal direction. We found that the calcined temperature has a strong influence on the size and morphology of SnO2 nanorods. The growth process of SnO2 nanorods is suggested to follow an Ostwald ripening mechanism. Our findings indicate that other nanorods or nanowires may be manipulated by using this technique, and might provide insight into the new opportunities to control materials fabrication.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.