Abstract

Topological insulators are noninteracting, gapped fermionic systems which have gapless boundary excitations. They are characterized by topological invariants, which can be written in many different ways, including in terms of Green's functions. Here we show that the existence of the edge states directly follows from the existence of the topological invariant written in terms of the Green's functions, for all ten classes of topological insulators in all spatial dimensions. We also show that the resulting edge states are characterized by their own topological invariant, whose value is equal to the topological invariant of the bulk insulator. This can be used to test whether a given model Hamiltonian can describe an edge of a topological insulator. Finally, we observe that the results discussed here apply equally well to interacting topological insulators, with certain modifications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.