Abstract

We deduce the thermophysical properties of near-critical xenon from measurements of the frequencies and half-widths of the acoustic resonances of xenon maintained at its critical density in centimeter-sized cavities. In the reduced temperature range 1 x 10-3<(T-Tc)/Tc<7 x 10 (-6), we measured the resonance frequency and quality factor (Q) for each of six modes spanning a factor of 27 in frequency. As Tc was approached, the frequencies decreased by a factor of 2.2 and the Q's decreased by as much as a factor of 140. Remarkably, these results are predicted (within +/-2% of the frequency and within a factor of 1.4 of Q) by a model for the resonator and a model for the frequency-dependent bulk viscosity zeta(omega) that uses no empirically determined parameters. The resonator model is based on a theory of acoustics in near-critical fluids developed by Gillis, Shinder, and Moldover [Phys. Rev. E 70, 021201 (2004)]. In addition to describing the present low-frequency data (from 120 Hz to 7.5 kHz), the model for zeta(omega) is consistent with ultrasonic (0.4--7 MHz) velocity and attenuation data from the literature. However, the model predicts a peak in the temperature dependence of the dissipation in the boundary layer that we did not detect. This suggests that the model overestimates the effect of the bulk viscosity on the thermal boundary layer. In this work, the acoustic cavities were heated from below to stir the xenon, thereby reducing the density stratification resulting from Earth's gravity. The stirring reduced the apparent equilibration time from several hours to a few minutes, and it reduced the effective temperature resolution from 60 mK to approximately 2 mK, which corresponds to (T-Tc)/Tc approximately =7 x 10(-6).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call