Abstract
In this paper we study bulk viscosity in a thermal QCD model with large number of colors at two extreme limits: the very weak and the very strong ’t Hooft couplings. The weak coupling scenario is based on kinetic theory, and one may go to the very strong coupling dynamics via an intermediate coupling regime. Although the former has a clear description in terms of kinetic theory, the intermediate coupling regime, which uses lattice results, suffers from usual technical challenges that render an explicit determination of bulk viscosity somewhat difficult. On the other hand, the very strong ’t Hooft coupling dynamics may be studied using string theories at both weak and strong string couplings using gravity duals in type IIB as well as M-theory respectively. In type IIB we provide the precise fluctuation modes of the metric in the gravity dual responsible for bulk viscosity, compute the speed of sound in the medium and analyze the ratio of the bulk to shear viscosities. In M-theory, where we uplift the type IIA mirror dual of the UV complete type IIB model, we study and compare both the bulk viscosity and the sound speed by analyzing the quasi-normal modes in the system at strong IIA string coupling. By deriving the spectral function, we show the consistency of our results both for the actual values of the parameters involved as well for the bound on the ratio of bulk to shear viscosities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.