Abstract

We investigate the bulk topological proximity effect in multilayer hexagonal lattice systems by which one can introduce topological properties into a system composed of multiple trivial layers by tunnel coupling to a single nontrivial layer described by the Haldane model. This phenomenon depends not only on the number of layers but also on their arrangement, which can lead to the emergence of dark states in multilayer systems. The response of a trivial system to the proximity of a topological insulator appears to be highly nonlocal, in contrast to the proximity effect observed in context of superconductivity. Furthermore, for a wide range of parameters our system is semimetallic with multiple Dirac points emerging in the Brillouin zone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.