Abstract

The bulk, surface, and blood-contacting properties of a series of polyether polyurethanes based on polyethylene oxide (PEO) (MW = 1450), polytetramethylene oxide (PTMO) (MW = 1000), and mixed PEO/PTMO soft segments were evaluated. The effect of varying the weight percentage of PEO, and thus the overall polarity of the mixed soft segment phase, was investigated. Two polymer blends prepared from a PTMO-based and a PEO-based polyurethane were also studied. Differential scanning calorimetry (DSC) and dynamic mechanical analysis indicated that the polyurethanes based on either the PEO or the PTMO soft segments are relatively phase mixed. The degree of phase mixing in the polymers increased with increasing weight fraction of PEO. As expected, water absorption and the hydrophilicity of the polymer increased with increasing PEO soft segment content. In vacuum, the PEO-rich polymers have a lower concentration of soft segment at the surface, possibly due to the migration of the polar PEO segments away from the polymer/vacuum interface. The blood-contacting results indicated that the higher PEO-containing polymers were more thrombogenic than the pure PTMO-based polyurethane. A threshold concentration of PEO in the polyurethane appeared to be required before the blood-contacting properties were significantly affected.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call