Abstract

We explore two methods for single crystal growth of the theoretically proposed magnetic Weyl semimetals $R$AlGe ($R$ = Pr,Ce), which prove that a floating zone technique, being both crucible- and flux-free, is crucial to obtain perfectly stoichiometric $R$AlGe crystals. In contrast, the crystals grown by a flux growth technique tend to be Al-rich. We further present both structural and elemental analysis, along with bulk magnetization and electrical resistivity data on the crystals prepared by the floating zone technique. Both systems with the intended 1:1:1 stoichiometry crystallize in the anticipated polar I4$_{1}$md (No. 109) space group, although neither displays the theoretically expected ferromagnetic ground state. Instead PrAlGe displays a spin-glass-like transition below 16 K with an easy-c-axis and CeAlGe has an easy-ab-plane antiferromagnetic order below 5 K. The grown crystals provide an ideal platform for microscopic studies of the magnetic field-tunable correlation physics involving magnetism and topological Weyl nodes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call