Abstract

Bulk shear viscosities were measured with a cone and plate microviscometer as a function of concentration, shear rate, and temperature for lavaged calf lung surfactant (LS), Exosurf, Infasurf, Survanta, and synthetic lipid mixtures dispersed in normal saline. Viscosity increased with phospholipid concentration for all surfactants, but its magnitude and shear dependence varied widely among the different preparations. Saline dispersions of Exosurf and synthetic phospholipids had low viscosities of only a few centipoise (cp) and exhibited minimal shear dependence. LS, Infasurf, Survanta, and lipid mixtures containing palmitic acid and tripalmitin had larger non-Newtonian viscosities that increased as shear rate decreased. At 35 mg of phospholipid/ml and 37 degrees C, viscosity values were 52.3 cp (Survanta), 31.1 cp (LS), and 25 cp (Infasurf) at a shear rate of 77 s(-1) and 16.9 cp (Survanta), 10.1 cp (LS), and 6.6 cp (Infasurf) at 770 s(-1). At 25 mg of phospholipid/ml and 37 degrees C, viscosity values at 77 s(-1) were 28.8 cp (Survanta), 4.7 cp (LS), and 12.5 cp (Infasurf). At fixed shear rate, viscosity was substantially decreased at 23 degrees C compared with 37 degrees C for LS and Infasurf but was increased for Survanta. Calcium (5 mM) greatly reduced the viscosity of both Survanta and Infasurf at 37 degrees C. Studies on synthetic mixtures indicated that phospholipid/apoprotein interactions were important in the rheology of lung-derived surfactants and that palmitic acid and tripalmitin contributed to the increased viscosity of Survanta. The viscous behavior of clinical exogenous surfactants potentially influences their delivery and distribution in lungs and varies significantly with composition, concentration, temperature, ionic environment, and physical formulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.